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Fourier transform is used in this paper to solve the problem of steady state response of
a beam on a viscoelastic foundation subjected to a harmonic line load. The solution is
constructed in the form of the convolution of the Green function of the beam. The theorem
of residue is employed to evaluate the generalized integral such that a closed-form solution
can be achieved. All the di!erent combinations of damping and vibration frequency are
discussed and analytical solutions are presented. As a special case, the solution of the beam
on a Winkler foundation is also discussed. The validation of the solution is veri"ed by
considering the static solution of the beam and comparing the degraded solution to
a well-known result. The closed-form expression of the result can be used to construct
algorithms for the inverse problems of non-destructive testing of pavement structures using
vibration devices.
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1. INTRODUCTION

Non-destructive testing and evaluation have received much attention in the "eld of
pavement engineering since the 1980s [1}3]. As one of the most commonly used
non-destructive testing devices for pavement structural evaluation, vibratory devices,
including the Dyna#ect, Road Rater, and the US Army Engineer Waterways Experiment
Station 16-kip (71 kN) vibrator, exert steady state dynamic loads on pavement surfaces [3].
The de#ections of the pavement surface at di!erent locations are measured using
geophones. Pavement structural evaluation is then achieved based on the inverse analysis of
the recorded response of the pavement structure to the steady state load.

The mathematical problem involved in interpreting the de#ection response is to estimate
the parameters of the governing equations of pavement structures assuming that the applied
load is known as a harmonic line load. Given the complexity involved in the inverse
problem, the most widely used techniques for the parameter estimation of pavement
structures are to use the static analysis of pavement structure and then compare the
measured response with the calculated response in the context of optimization with certain
objective functions. Typical models for representing pavements are an in"nite beam or plate
resting on a Winkler foundation [4}8]. The pavement structural parameters are eventually
determined by identifying the parameters of a pavement structure whose calculated
response is most close to the measured response in terms of certain objective functions [9].

Clearly, there are two fatal defects involved in the current approach. One is that the
calculated response of pavement is based on a static analysis, which ignores the time,
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Figure 1. A beam on a viscoelastic foundation subjected to a harmonic line load.
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inertial and damping e!ects. Therefore, the theoretical model is apparently inconsistent
with the realistic loading condition. The other problem is that the uniqueness is always in
conjunction with inverse problems. Consequently, even though the comparison between the
calculated and the measured responses may identify a set of structural parameters that "t
the experimental data well, these parameters may not be the actual parameters of the
pavement structure. These problems are essentially caused by a lack of awareness of the
dynamic response of pavement structures to the steady state loads. To better understand the
dynamic response of pavement structures to the steady state loading condition, it is
necessary to investigate the forward problem, that is, the response of pavement structures
under harmonic line loads.

This paper focuses on the analytical solution of an in"nite Bernoulli}Euler beam on
a viscoelastic foundation subjected to a harmonic line load. Similar to the method used in
reference [10], the Fourier transform is utilized to simplify the governing equation of the
beam to an algebraic equation. It is found that the response properties are di!erent for
low- and high-frequency vibration, which con"rms the results obtained in reference [11].

The content of this paper is organized as follows. The related problem is formulated in
section 2 and the associated viscoelastic foundation model and its derivative, i.e., the
Winkler foundation model, are also discussed. In section 3, the Green function of the beam
is derived using the integral transform method. In section 4, the solution is constructed
using a convolution in terms of the Green function obtained in section 3. In section 5,
a closed-form solution is developed using complex function techniques. Special cases, such
as the static solution and Winkler foundation, are discussed in section 6.

2. PROBLEM FORMULATION

Figure 1 depicts the co-ordinate system and signi"cant dimensions. The in"nite length of
the beam, respectively, runs along the x-axis.

Denote y (x, t) as the de#ection of the beam in the y direction, in which x represents the
travelling direction of the pavement structure, and t the time. The well-known governing
equation of a Bernoulli}Euler beam on a foundation is (see references [12}14])

EI
L4y

Lx4
#m

L2y

Lt2
"F (x, t)!Q (x, t), (1)

where EI is the rigidity of the beam, E is Young's modulus of elasticity, I is the moment of
inertia of the beam, m is the unit mass of the beam, F (x, t) and Q (x, t) are applied external
loads and restoring forces from the foundation, respectively.

One of the most commonly used foundation models in pavement design is the Winkler
foundation model. It performs well in many circumstances (see references [5, 7, 14]). The
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Winkler foundation model assumes that the reactive pressure is proportional to the
de#ection of the beam, that is Q"Ky. The term K is called the modulus of subgrade
reaction. The assumption that K is constant implies the linear elasticity of the subgrade. In
reality, damping e!ects always exist in any dynamic system. If the damping e!ect of the
subgrade is considered, the restoring force Q"Ky#CLy/Lt. This is a viscoelastic
foundation model consisting of a spring of sti!ness K and a dashpot of viscosity, C, placed
parallel, as shown in Figure 1. Substitution of the restoring force into equation (1) gives

EI
L4y

Lx4
#Ky#C

Ly

Lt
#m

L2y

Lt2
"F(x, t). (2)

A harmonic line load can be expressed by

F (x, t)"P
H (r2

0
!x2)

2r
0

exp(iXt), (3)

where r
0

is the halfwidth of the line load, X and P are frequency and amplitude of the
applied steady state load, respectively, and H( ) ) is the Heaviside step function, which is
de"ned by

H(x!x
0
)"G

0 for x(x
0
,

1
2

for x"x
0
,

1 for x'x
0
.

(4)

Assume the beam is at rest initially. This means that the initial condition of the beam
displacement is zero. Equations (2) and (3) constitute the mathematical description of the
problem considered here.

3. THE GREEN FUNCTION OF THE BEAM

According to the theory of mathematical}physical equations, the Green function of
a partial di!erential equation represents the fundamental solution of the equation as the
load condition is given in the form of the Dirac-delta function. For the current problem, the
Green function of the beam is de"ned as the solution of equation (2), given that the external
load is characterized by

Fd(x, t)"d (x!x
0
)d (t!t

0
), (5)

in which d ( ) ) is the Dirac-delta function. It is de"ned by

P
=

~=

d (x!x
0
) f (x) dx"f (x

0
). (6)

De"ne the two-dimensional (2-D) Fourier transform and its inversion as

fI (m, u)"F[ f (x, t)]"P
=

~=
P

=

~=

f (x, t) exp[!i(mx#ut)] dx dt, (7a)

f (x, t)"F~1[ fI (m, u)]"(2n)~2 P
=

~=
P

=

~=

fI (m, u) exp[i(mx, ut)] dm du, (7b)
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where F[ )] and F~1[ ) ] are the Fourier transform and its inversion respectively. To solve
the Green function, take the 2-D Fourier transform of both sides of equation (2),

EIm4GI (m, u;x
0
, t

0
)#KGI (m, u;x

0
, t

0
)#iCuGI (m, u;x

0
, t

0
)!mu2GI (m, u;x

0
, t

0
)"FI (m, u),

(8)

in which FI (m, u) is the Fourier transform of Fd(x, t), and the de#ection response y (x, t) has
been replaced by the symbol GI (m, u;x

0
, t

0
) to indicate the Fourier transform of the Green

function. Also, the following property of Fourier transform is used in the derivation of
equation (8):

F[ f (n)(t)]"(iu)nF[ f (t)]. (9)

Since FI d(m, g) is the representation of Fd(x, t) in the frequency domain, it is also needed to
evaluate the Fourier transform of Fd(x, t). This can be implemented by taking the 2-D
Fourier transform of both sides of equation (5):

FI d (m, u)"P
=

~=
P

=

~=

d (x!x
0
)d(t!t

0
) exp[!i (mx#ut)] dx dt"exp[!i (mx

0
#ut

0
)],

(10)

in which the property of the Dirac-delta function, i.e., equation (6), is utilized for evaluating
the above integral. Substitute this result (10) into equation (8) and realize that (8) is an
algebraic equation. It is straightforward to see that

GI (m, u;x
0
, t

0
)"exp[!i(mx

0
#ut

0
)] [EIm4#K#iCu!mu2]~1. (11)

The Green function given by equation (11) is in the frequency domain and must be
converted to the time domain. To this end, take the inverse Fourier transform on both sides
of equation (9),

G(x, t;x
0
, t

0
)"(2n)~2 P

=

~=
P

=

~=

expMi[m(x!x
0
)#u(t!t

0
)]N

EIm4#K#iCu!mu2
dm du. (12)

Formula (12) is the Green function of the beam on a viscoelastic foundation. The Green
function serves as a fundamental solution of a partial di!erential equation. It can be very
useful when dealing with linear systems.

4. INTEGRAL REPRESENTATION OF THE SOLUTION

According to the theory of linear partial di!erential equations (see reference [15]), the
solution of equation (2) given that F (x, t) is taking the form of formula (3), can be
constituted by integrating the Green function in all the dimension, i.e.

y (x, t)"P
t

~=
P

=

~=

F (x
0
, t

0
)G(x, t; x

0
, t

0
) dx

0
dt

0
. (13)

Taking equations (3) and (12) into equation (13) gives

y (x, t)"P
t

~=
P

=

~=
P

=

~=
P

=

~=

PH(r2
0
!x2

0
) expMi[m(x!x

0
)#u(t!t

0
)#Xt

0
]N

(2n)22r
0
EI(m4#KM #iCM u!mN u2)

dmdudx
0
dt

0
,

(14)
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where KM "K/EI, CM "C/EI, and mN "m/EI are relative sti!ness, damping and mass
respectively.

The following integrals exist:

P
=

~=

H(r2
0
!x2

0
) exp(!imx

0
)

2r
0

dx
0
"P

r0

~r0

exp(!imx
0
)

2r
0

dx
0
"

sin r
0
m

r
0
m

(15)

and

P
t

~=

exp[i(X!u)t
0
] dt

0
"2nd(X!u). (16)

Substituting equations (15) and (16) into equation (14) and reapplying the property (6) of the
Dirac-delta function give

y(x, t)"
P exp(iXt)

2nEI P
=

~=

sin r
0
m exp(imx)

r
0
m (m4#KM #iCM X!mN X2)

dm. (17)

The dynamic de#ection corresponding to a harmonic concentrated load F
P0*/5

(x)"
d(x) exp(iXt) can be simply obtained by taking the limit on both sides of equation (17), i.e.,

y (x, t)"
P exp(iXt)

2nEI P
=

~=

exp(imx)

m4#KM #iCM X!mN X2
dm. (18)

Here, the following limit is used in the derivation of equation (18):

lim
r0?0

sin r
0
m

r
0
m

"1. (19)

So far, the author has obtained the integral representation of the dynamic de#ection of
the beam under a harmonic line load. It is noteworthy to point out that only the real part of
the integrand of equation (17) should be taken into account. As indicated in equation (17)
the integral of form (17) is generally a complex function, which means that a phase di!erence
appears between the frequency of the external excitation and the frequency of the response
of the beam. However, if the foundation is considered as a Winkler foundation, that is to say
C"0 in equation (17), the integral becomes a real function. In this case, no phase di!erence
exists. Expression (17) can be further developed using complex function techniques. In
the following section, the theorem of residue is employed to evaluate the integration of
form (17).

5. CLOSED-FORM REPRESENTATION OF THE SOLUTION

5.1. ROOTS OF THE CHARACTERISTIC EQUATION

Before the integration (17) is further evaluated, it is necessary to investigate the roots of
the characteristic equation of this type:

m (m4#KM !mN X2#iCM X)"0. (20)

Characteristic equation (20) is a "fth order algebraic equation with uncertain parameters of
the beam, the foundation and the load. The roots of equation (20) depend upon the
distribution and combination of these parameters. To identify the roots, the author
classi"es equation (20) into two categories. One is concerned with a Winkler foundation,
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where no damping e!ect is involved. The other is concerned with the viscoelastic
foundation, i.e., CO0. Furthermore, in each category three cases are, respectively,
discussed depending on the relationship between the load frequency and the
eigenfrequencies of the structures.

5.1.1. =ithout damping (C"0)

This case corresponds to a beam resting on a Winkler foundation. De"ne the equivalent

sti!ness KK "DKM !mN X2 D and the resonance frequency X
0
"JK/m.

(1) X(X
0
. Equation (20) becomes m (m4#KK )"0. Four roots of this equation possess

complex values and can be given by m"4JKK exp[i(1#2j)n/4] with j"0, 1, 2, 3. A real
root of the equation can be apparently identi"ed as m"0.

(2) X"X
0
. Equation (20) becomes m5"0. In this case, all "ve roots of the equation

overlap at m"0.
(3) X'X

0
. Equation (20) becomes m (m4!KK )"0. Two of the "ve roots of this equation

are imaginary values and the other three roots possess real values. They are given by

m"4JKK exp[i( jn/2)] with j"0, 1, 2, 3 and m"0 respectively.

5.1.2. =ith damping (CO0)

De"ne the equivalent damping coe$cient CK "CM X.
(1) X(X

0
. Equation (20) becomes m (m4#KK #iCK )"0. Four roots of this equation

possess complex values and can be given by m"8JKK 2#CK 2 exp[i(0#n/2jn)/4] with
j"0, 1, 2, 3 and tan 0"CK /KK '0. One real root is m"0.

(2) X"X
0
. Equation (20) becomes m (m4#iCK )"0. In this case, four roots of the

equation possess complex values and can be given by m"4JCK exp[i(3n#4jn)/8] with
j"0, 1, 2, 3. A real root is m"0.

(3) X'X
0
. Equation (20) becomes m (m4!KK #iCK )"0. Four roots of the equation

possess complex values and can be given by m"4JCK exp[i(0#2jn)/4] with j"0, 1, 2, 3
and 0"!CK /KK (0. A real root is m"0.

5.2. CLOSED-FORM REPRESENTATION OF THE SOLUTION

According to the property of symmetry of the problem, the de#ection at positions of
x(0 is identical to that of x'0. Without loss of generality, only the cases of x'0 and
x"0 are considered. Since for each case of C and X a real root exists at m"0, the integral
of type (17) is in the sense of the Cauchy principal value (p.v.) of the integration. According
to the theorem of residue, for x*0, the following integral can be evaluated by residues in
the upper half-plane and on the real axis:

p.v. P
=

~=

sin r
0
m exp(imx)

r
0
m (m4$KK #iCK )

dm"2ni +
I. m;0

Res C
sin r

0
m exp(imx)

r
0
m(m4$KK #iCK )D

#ni +
I. m/0

Res C
sin r

0
m exp(imx)

r
0
m (m4$KK #iCK )D , (21)

where p.v. indicates the principal value of the integration, Im( )) represents imaginary parts
of the complex variable m, and the positive and negative signs in front of the equivalent
sti!ness KK are determined by X(X

0
and X'X

0
respectively.



TABLE 1

Closed-form de-ection of a beam under a harmonic line load (x*0)

Damping Frequency De#ection y (x, t)

C"0 X(X
0

(4r
0
EIKK )~1iP exp(iXt)

2
+
j/1

exp(im
j
x) sin r

0
m
j
,

where m
1
"4JKK e*n@4 and m

2
"4JKK e*3n@4

C"0 X"X
0

Does not exist

C"0 X(X
0

(4r
0
EIKK )~1iP exp(iXt)

2
+
j/1

exp(im
j
x) sin r

0
m
j
,

where m
1
"i4JKK and m

2
"!4JKK

CO0 X(X
0

iP exp(iXt)
2
+
j/1

exp(im
j
x) sin r

0
m
j

r
0
EI(!5JKK 2#CK 2#KK #iCK )

, where

m
1
"8JKK 2#CK 2e*(0`n)@4, m

2
"8JKK 2#CK 2e*(0`3n)@4 and tan 0"CK /KK

CO0 X"X
0

!(4r
0
EICK )~1P exp(iXt)

2
+
j/1

exp(im
j
x) sin r

0
m
j

where m
1
"4JCK e*3n@8 and m

2
"4JCK e*7n@8

CO0 X'X
0

iP exp(iXt) +2
j/1

exp(im
j
x) sin r

0
m
j

r
0
EI(5JKK 2#CK 2!KK #iCK )

, where m
1
"8JKK 2#CK 2e*(0`2n)@4

m
2
"8JKK 2#CK 2e*(0`4n)@4 and tan0"!CK /KK
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Substitution of equations (21) into equation (17) gives

y(x, t)"
iP exp(iXt)

2r
0
EI G2 +

I. m;0

Res C
sin r

0
m exp(imx)

m (m4$KK #iCK )D# +
I. m/0

Res C
sinr

0
m exp(imx)

m(m4$KK #iCK )DH . (22)

To further evaluate equation (22), residues at di!erent locations of the complex plane
need to be derived. For the residue whose denominator is not zero while the complex
variable m is taking the poles m

j
obtained above, its value can be calculated by

ResC
sin r

0
m exp(imx)

m (m4$KK #iCK )D Km/mj
"C

sin r
0
m exp(imx)

(5m4$KK #iCK )D Km/mj
. (23)

For the residue whose denominator becomes zero while the complex variable m is taking the
roots m

j
obtained above, its value can be calculated by

ResC
sinr

0
m exp(imx)

m(m4$KK #iCK )D Km/mj
"lim

m?mj
(m!m

j
)
sin r

0
m exp(imx)

m (m4$KK #iCK )
. (24)

Based on the aforementioned analysis, eventually, the author is able to write the
integration (17) in closed-form expressions. Table 1 provides the "nal results of the
de#ection for di!erent cases. It is noted that the integration of type (17) does not exist as
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C"0 and X"X
0
. This is re#ected by the singularity of the integrand in equation (17) as

the complex variable m approaches the pole m"0. In this case, resonance will occur and the
amplitude of de#ection becomes in"nite.

In the case of a Winkler foundation, because damping is not considered in a Winkler
foundation, only formulas in the "rst three rows in Table 1 apply. In practice, the vibratory
devices used for pavement non-destructive testing generate harmonic loads with frequencies
5}60 Hz [3]. These frequencies usually fall into the low-frequency range of X(X

0
. Hence,

the dynamic de#ection that has the greatest practical value for non-destructive pavement
evaluation is the formula of the "rst row in Table 1. It is helpful to write this expression in

a more clear form. De"ning a new parameter b"4JKK /4 and substituting m
1

and m
2

into
that expression, we have

y (x, t)"i(16r
0
EIb4)~1P exp(!bx) exp(iXt)#Mexp(ibx) sin[r

0
a (i#1)]

#exp(!ibx) sin[r
0
a (i!1)]N . (25)

Utilization of the Euler formula exp(ih)"cos h#i sin h in equation (25) and rearranging
the terms yields

y (x, t)"i(16r
0
EIb4)~1P exp(!bx) exp(iXt)Mcos(bx)Msin[r

0
a(i#1)]#sin[r

0
a (i!1)]N

i sin(bx)Msin[r
0
a (i#1)]!sin[r

0
a(i!1)]NN. (26)

Since the sum and the di!erence of sinusoid functions can be formulated into the form of
a product, equation (26) can be "nally expressed as

y(x, t)"!(8r
0
EIb4)~1P exp(!bx) exp(iXt)

#[sin(bx) sin(r
0
b) cos(ir

0
b)!i cos(bx) cos(r

0
b) sin(ir

0
b)]. (27)

6. STATIC SOLUTION

It is of interest to examine the static solution corresponding to a concentrated load
through applying X"0 and r

0
"0 to the result of C"0 and X(X

0
provided in Table 1.

In this case, the de#ection becomes

y (x)"
iP

4EIKM
lim
r0?0

2
+
j/1

exp(im
j
x) sin r

0
m
j

r
0

"

iP

4EIKM
2
+
j/1

m
j
exp(im

j
x). (28)

Substitute m
1

and m
2

of the cases of C"0 and X(X
0

into equation (28) and rewrite the
expression as

y(x)"
iJ2P

16EIb3 GexpAi
n
4B expCiJ2bx expAi

n
4BD#expAi

3n
4 B expCiJ2bx expAi

3n
4 BD

"!

P exp(!bx)

8EIb3
(sin bx#cos bx). (29)

This expression (29) is consistent with the known results provided by references [17, 18].
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7. CONCLUSIONS

Fourier transform is used to solve the problem of steady state response of a beam on
a viscoelastic foundation subjected to a harmonic line load. The solution is constructed in
the form of the convolution of the Green function of the beam. The theorem of residue is
employed to evaluate the generalized integral such that a closed-form solution can be
achieved. Di!erent cases of damping and frequency are discussed and analytical solutions
are presented. The closed-form expression of the result can be used to construct algorithms
for harmonic load-based inverse problems of pavement structures.
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